

WEST BENGAL STATE UNIVERSITY

B.Sc. Honours 3rd Semester Examination, 2021-22

STSACOR06T-STATISTICS (CC6)

Time Allotted: 2 Hours

Full Marks: 40

The figures in the margin indicate full marks. Candidates should answer in their own words and adhere to the word limit as practicable. All symbols are of usual significance.

GROUP-A

Answer any <i>four</i> questions from the following	$5 \times 4 = 20$
---	-------------------

- 1. Derive the sampling distribution of $\frac{s_1^2}{s_2^2}$, where s_1^2 and s_2^2 be the sample variances 5 based on independent samples from $\mathcal{N}(\mu_1, \sigma^2)$ and $\mathcal{N}(\mu_2, \sigma^2)$ populations respectively.
- 2. Let $X_1, X_2, ..., X_n$ be a random sample drawn from $R(0, \theta)$, $\theta > 0$. Find the 3+2 joint pdf of $U = X_{(n)} X_{(1)}$ and $V = \frac{1}{2}(X_{(1)} + X_{(n)})$. Hence, find the marginal distributions of U and V. Where $R(0, \theta)$ is the rectangular distribution over $(0, \theta)$.
- 3. The joint pdf of (U, V)' is given by $f(u, v) = \begin{cases} \exp(-\theta u - \frac{v}{\theta}) & \text{if } 0 < u, v < \infty \\ 0 & \text{otherwise} \end{cases}$

where $\theta > 0$. Define X = UV and Y = U/V. Find the joint pdf of (X, Y)'. Hence find the marginal distributions of X and Y.

4. Let X, Y, Z ~ *iid* Gamma
$$(\alpha, \beta)$$
, $\alpha, \beta > 0$. Show that $U = \frac{Y}{X+Y}$ and $4+1$

 $V = \frac{Z}{X + Y + Z}$ are independently distributed. Hence find the marginal distributions of U and V.

5. Let $\{(X_i, Y_i)'; i = 1, 2, ..., n\}$ be a random sample from $\mathcal{BN}(0, 0, \sigma^2, \sigma^2, \rho)$ 4+1 where $\sigma > 0$ and $|\rho| < 1$. Derive, in detail, the sampling distribution of $\overline{U} = \frac{1}{n} \sum_{i=1}^{n} U_i$ where $U_i = X_i / Y_i$, i = 1, 2, ..., n. Modify your answer when $\rho = 0$.

3 + 2

6. What is confidence coefficient in the context of interval estimation? Let 1+4 $Y_i = \alpha + \beta x_i + e_i$, i = 1, 2, ..., n; where x is a non-stochastic variable and $e_i \sim iid \mathcal{N}(0, \sigma^2)$, i = 1, 2, ..., n with σ^2 is unknown. Find $100(1-\alpha)\%$ confidence interval of the parameter β .

GROUP-B

Answer any *two* questions from the following $10 \times 2 = 20$

7

6

- 7. (a) On the basis of a random sample of size *n* drawn from $R(-\theta, \theta)$, where $\theta > 0$, 3 suggest two distinct unbiased estimators of θ .
 - (b) Suppose that a pair of random variables $(X_1, X_2)'$ has the joint pdf given by

$$f(x_1, x_2) = \alpha \varphi(x_1, x_2; \mu, \mu, \sigma^2, \sigma^2, \rho) + (1 - \alpha) \varphi(x_1, x_2; \mu, \mu, \sigma^2, \sigma^2, -\rho)$$

with $0 < \alpha < 1$, where $\varphi(x_1, x_2; \mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$ stands for the bivariate normal pdf with means μ_1, μ_2 , variances σ_1^2, σ_2^2 and correlation coefficient $\rho \in (0, 1)$. Show that marginally X_1 and X_2 are normal but $X_1 + X_2$ is not normally distributed.

- 8. Define Student's *t* statistic. Derive its sampling distribution. Discuss its use in 1+7+2 statistical inference.
- 9. (a) Let the critical region corresponding to the testing problem 4 $H_0: X \sim \mathcal{N}(0, 1)$ vs. $H_1: X \sim Cauchy(0, 1)$ is given by

$$\omega = \{ x \in \mathbb{R} \mid x > 2 \text{ or } x < -2 \}.$$

Find probability of type-I error and type-II error. [Given that $\Phi(2) = 0.97725$]

- (b) Suppose a paper producing company produces a very good quality paper. The producer claims that the chance of occurring defect(s) in a page is less than 5%. To verify the claim a survey was conducted to collect information regarding the number of defects observed per page. On the basis of a random sample of size *n* collected from the survey, formulate the testing problem and describe a test procedure to judge the producer's claim.
 - **N.B.**: Students have to complete submission of their Answer Scripts through E-mail / Whatsapp to their own respective colleges on the same day / date of examination within 1 hour after end of exam. University / College authorities will not be held responsible for wrong submission (at in proper address). Students are strongly advised not to submit multiple copies of the same answer script.

×